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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAl NOTE D-354

EFFECTS OF STING-SUPPORT DIA_ME_ER ON THE BASE

PRESSURES OF AN ELLIPTIC CONE AT MACH

NUMBERS FROM 0.60 TO 1.40

By Louis S. Stivers, Jr., and Lionel L. Levy, Jr.

SUMMARY

Measurements were made to determine the effects of sting-support

diameter on the base presstm_es of an elliptic cone with ratio of cross-

section thickness to width of 1/3 and a plan-form semiapex angle of 15 ° •

_e investigation was made for model angles of attack from -2° to +20 °,

at Mach numbers from 0.60 to 1.40, and for a constant Reynolds ntm_er of

1.4 million_ based on the length of the model.

The results indicated that the sting interference decreased the base

axial-force coefficients by substantial amounts up to a maximt_n of about

one-third the value of the coefficient for no sting interference. There

was no practical diameter of the sting for which the effects of the sting

on the base pressures would be negligible throughout the Mach number and

angle-of-attack ranges of the investigation.

INTRODUCTION

Many of the recent configurations contemplated for atmosphere

re-entry vehicles are characterized in part by large, blunt_ noncircular

bases. During wind-t_nel tests of such a configuration, the model is

usually mounted on a sting support attached to the large base. To evaluate

the aerodynamic characteristics of the model accurately at subsonic and

supersonic Mach numbers, the influence of' the sting support on the base

pressures must be known, particularly since the axial-force contribution

of the base will be a large part of the total axial force on the model.

Presently available data pertaining to sting interference on base presstu_es

at subsonic and supersonic Mach numbers_ such as given in references i

to 8, were obtained for bodies of revolution with cylindrical, boattailed,

or flared afterbodies. Such data cannot be expected to be generally

applicable to bodies with large, noncircular bases.
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It is the purpose of this paper to provide information on sting

interference for an elliptic cone at Mach ntmbers ranging from 0.60 to

1.40 and angles of attack from -2° to +20 ° • The interference was

determined from pressure measurements at several points on the base of

the model.

NOTATION

B

c%

c%

d

M

P_

%

t

area of model base, 4.712 sq in.

base axial-force coefficient (positivc rearward), base axial force

increment in base axial-force coefficJent due to the sting;

--'(CAb)withsting - (CAb)without sting

Pb - p_

base-pressure coefficient_ q_

sting diameter

free-streamMach number

static pressure on model base

free-stream static pressure

free-stream dynamic pressure

thickness or minor axis of ellipse at model base (see fig. i)

angle of attack of model_ deg
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APPARATUS AND MODEl]

Wind Tunnel

The investigation was conducted in the %nes 2- by 2-Foot Transonic

Wind Tunnel. This tunnel utilizes a flexibl_ nozzle and porous test-

section walls to permit continuous operation up to a Mach number of 1.4,

and to provide choke-free flow in the test s_ction throughout the transonic

Mach number range. A constant Reynolds numb Jr is maintained throughout

the operational range of Mach numbers by con_rolling the stagnation

pressure within the tunnel.
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The elliptic cone model had a ratio of cross-section thickness to

width of 1/3, and a plan-form semiapex angle of 15 °. Support for the

model during the tests was provided by a fixed half-sting which was

fitted on the right-hand side (facing upstream) of a reflection plate

(see fig. l(a)). This half-sting support extended about i0 diameters

from the model base to a whole sting flare. On the left side of the

reflection plate, any one of several "dummy" half-sting configurations

was mounted for the investigation.

Five different half-sting configurations were used. These are

illustrated in figure l(b). Four removable half-stings provided a

variation of the ratio of sting diameter to model base thickness from

0.619 to 0 and the fifth provided a change in the angle of the flare

fairing used in the absence of a half-sting.

The sting length and flare angle for the model support were selected

in an effort to eliminate the necessity of considering these items in

the present evaluation of sting-support interference. The choice was

made by using as a guide the critical length and flare angle data of

reference 7. Although the data of this reference are not strictly

applicable to the present model, it is believed that the appropriate

criteria would not be more stringent for the present model.

Boundary-layer transition wires with a diameter of 0.006 inch were

secured to the model surface with clear lacquer. One wire was placed

around the model at a longitudinal station 0.56 inch from the apex.

Between this station and the model base, additional wires were positioned

on the upper and lower surfaces along rays which were located at a

distance of 45 percent of the local span on each side of the model plane

of symmetry. (See fig. l(a).)

Orifices for measuring pressures on the base of the model at four

points on each side of the reflection plate were located at the positions

indicated in figure l(c). The pressure leads were connected to presstu_e

transducers located outside the tunnel.

TESTS

Two series of tests were made. A preliminary series was made to

select a suitable reflection plate, and a final series of tests was made,

using the selected plate illustrated in figure l(a), to determine the

effects of the various sting configurations on the base pressures on

the model. The criteria for selecting the reflection plate were that it

be of sufficient length and height to essentially isolate the pressure

disturbances on each half of the model base, and that it not affect the
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base pressures to a measurable degree. For tl_e preliminary series, tests

were made with various sized plates and withoT_t a plate using only sting

configtu'ations A and E (see fig. l(b)). For both series of tests,

presstu'es were measured with the transition wires mounted on the model.

The visualization technique described in reference 9 was used to ascertain

that the wires were effective in producing a turbulent boundary layer.

In both series of tests, base pressures were measured at Mach numbers

ranging from 0.60 to 1.40 and at a Reynolds n_nber of 1.4 million based

on the model length. The preliminary tests w,_re limited to a few repre-

sentative Mach numbers and angles of attack, _tnd to an angle-of-attack

range !h'om 0° to 16 ° . The angle-of-attack ravage of the final tests was

fL'om -2 ° to +20 °.

CORRECTIONS AND PRECISZON

A
4
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No wall-interference corrections have be_n applied to the measured

base pressures of this report. Any existing ,tall effects are believed

to have been tu_arfected by sting configtu_atio_ so that the data based

on differences in pressures due to the various; changes in sting config-
umation are considered to be interference fre_.

Other factors which could have influenced the measured data have

been !'olmd to be insignificant and have been _[eglected. In addition to

any systeL_tic erL'ors that might be introduce_[ by corrections which have

been neglected_ the test data are subject to :'andom errors of measurement

which influence the reliability of the data. The mean square errors or

standard deviations in Reynolds n_n'oer, Hach l_umber, angle of attack,

and press_u'e coefficient (or base axial-force coefficient) have been

evaluated by the method of reference lO. Rep:'esentative values are

given in the following table:

Standard deviations

Item M = 0.60 M = 1.0 M = 1.40

R

M

Cp

(or CA)

±O.02XlO e

±0.002

±0.02 °

±o.006

±o 'O2XlO
±0.003
±0.02 °

±o.oo5

±0.02><106

±O.005
±0.02 °

±o.0o4
i
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RESULTS AND DISCUSSION
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The results of the investigation are presented in three forms; as

base-pressure coefficients in fig_are 2, as base axial-force coefficients

in figure 3, and as increments of base axial-force coefficient due to

sting-diameter interference in figtu_es 4 and 5- The pressure coefficients

are presented for both halves of the model base, but for' only six repre-

sentative angles of attack. The base axial-force coe i'fieients associated

with the various removable half-sting diameters were determined as the

negative of the average values of the base-pressure coefficients for the

removable sting side of the reflection plate. The values for a sti_

diameter of zero were determined from an average of the values for _ting

configurations D and E. _e increments of base axial-force coefficient

are the changes in the coefficient from the values associated with no

sting (zero sting diameter) to those corresponding to each diameter.

Before consideration is given to the effects of the sting support,

a few significant characteristics of the base-pressu_e and base axial-

force coefficients (rigs. 2 and 3) should be noted. The pressure c_e_'-

ficients for each configu_'ation are approxiraately uniform over each half

of the model base. As was expected_ however, the magnitude of the pressu_'e

coefficients on the removable-sting side of the reflection plate and the

magnitude of the base axial-force coefficients varied significantly a_J

the sting configra_ation was changed. 0n the fixed sting side o:i_ t]_e

plate the presstu_e coefficients remained essentially constant. A region

of anomalous data for the removable-sting side of the plate exists a% an

angle of attack of i0 ° for Mach numbers near 0.95 (see fi_s. 2 and 3).

In this region there were small oz' essentially no effects on the base

pressures or base axial forces resulting from the changes in sting

configuration. No explanation can be given for this irregularity.

The presence of the sting support generally caused substantial
reductions in the base axial-force coefficients. The maximmn reduction

amounted to about -0.2_ which was approximately one-third of the corre-

sponding base axial-force coefficient for zero sting diameter. _e

largest effects of the sting at each angle of attack occru'red at _.'_ch

numbers between 1.0 and i.i (see figs. 4 and 5). The increments of b_se

axial-force coefficient due to the sting do not vary linearly with ratio

of sting diameter to base thickness (fig. 4), and are not reduced

significantly at supersonic Mach numbers until the ratio has been reduced

to small values. Actually, there does not appear to be any practical

value of the ratio that will provide negligible influence of the sting

on the base axial-force coefficients throughout the range oJ_ _Zch nm_oors
from 0.60 to 1.40.



CONCLUSIONS

The results of the investigation of stilg-support diameter effects
on the base pressures of an elliptic cone at Machnumbersfrom 0.60 to
1.40 and for angles of attack from -2° to +20° , with Reynolds number
held constant at 1.4 million, indicate the f)llowing:

i. The presence of the sting generally reduced the base axial-force
coefficient by appreciable amounts. The maximumreduction diminished
the base axial-force coefficient by about on_-third.

2. There was no usable diameter of the sting for which the inter-
ference on the base pressures would be negligible throughout the ranges
of Machnumbersand angles of attack of the tests.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, Calif., Oct. 19, 1960
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A k Reflection plate _ Section A-A

-- 8.533 4.7 ° Fixed, .438 R

, 438 R

.010 8.523 _-_ d/t : .619

A Configuration A _t_'_

8.553 ....... _._
_---- 6.743 -_ 4.7 °

-_J Configuration B
A

Section A-A

f_Fixed,.438 R

Removoble, .292 R

d/t =.413

A

4.958 4.70

"A Configuration C

Section A-A

8.533 _-_

4.7 °

Configuration D

Section A- A

_ Fixed, .438 R

V d/t = 0

A

A

8.533

-- -- 6.062 I0 o

Configuration E

Section A-A

_ Fixed, .438 R

==¢== ....

U d/t=°

All dimensions in inches

except as noted

A
4
3
2

(b) Description of sting configurations.

Figure I.- Continued.
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Cp b

-4 _-__

Orifice 7

-.6

-.8 l

F

Cp b

Cp b

-.2

-.8

-.2

-.4

-•6

-.8

Orifice 3

Ir
Sting

configurations

O A
rn B

<> c
A D
,4 E

Cp b

-.2

-.4

-6

Orifice I k_'_,,,,_r _

(a) _ = 0°; removable sting side of reflection plate.

Figure 2.- Pressure coefficients for each orifice at the model base.

A

4
3
2
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A

4

3
2

Cp b

-2

-4

-6

-8

Orifice 8

_..._ .3--'---

Cp b

-.2
!

-.4

-.6

-.8

Orifice 6

/

Sting
configurations

O A
[] B

<) c
•,:, D
.4 E

-.2

-.4 _.
Orifice 4 I_

CPb -.6 -- -1---

--.8

,___"_

Cp b

-.4 --. " "_-- _:_i l_=::_
Orifice 2 _i1_ _ '_

-.6

==.-4a--'-

-8
.6 .7 .8 .9 1.0 I.I 1.2 1.3 1.4

M

(b) _ = 0°; fixed sting side of reflection plate.

Figure 2.- Continued.
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-°4

Orifice

Cp b

--.6

-.8

Cp b

Cp b

-.2

-.4

-°6

-.8

-.4 _---_ ==_ J====

Orifice .3

-.6

Orifice '_- ._ S _'-"

,_,_ _.._. configurations
O A

A

Q B

_1 E

A

4
3
2

Cp b

-.8

-.2

--,4

-.6

-.8
.6 .7 .8 .9 1,0 I.I 1.2 1.3 1.4

M

4 °(c) _ = ; removable sting side of r_flection plate.

Figure 2.- Continued.
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Cp b

-.2

--.4

0r,*,ce8 __
-.6

A

4

3
2

Cp b

Cp b

Cp b

-8

-2

-.4
Orifice 6

-.6

-.8

Sting
configurations

G A

(3 B

c
O

,4 E

-.2

-.4 ---

Orifice 4

-.6

-.8

,d

-.2

I
--.4

Orifice 2_

-,6 --

-.8
.6 .7

(d) _ = 4°_

I---

Y
_r

.8 .9 I0 I.I 1.2 1.3

M

fixed sting side of reflection plate.

14

Figure 2.- Continued.
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Cp b

Cp b

Cp b

-2

-8 _

-.4
Orifice 5

-.8

Orifice 3

Sting

_i_-___---- -- configurations(3A
--- 13 B

C

/x D

.,1 E

r _

L

A

3

Cp b

.6 .7 ,8 .9

[
1.0 I.I 1.2 1.3 1.4

M

(e) _ = $o removable sting side of re_lection plate.

Figu_e 2.- Continued.
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Cp b

Cp b

r

-I
Sting

configurotions

Q A
O

z_ D

.4 E

Cp b

_ _'ce'_i T............__

.6 .7 .8 .9 1.0

M

I.I 1.2 1.3 1.4

(f) _ = 8o; fixed sting side of reflection plate.

Figure 2.- Continued.
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Cp b

Cp b

Cp b

Cp b

2
-4 _-- L -_i

Orifice 7 _ .... .. _ _ _""_

-.2

--.4

Sting

_ i_ij _
_ c

......... /x D
-.2 _ -- ! ._ E

-.4 _ L ,

Orifice 3 _l_, _ _::::_ _/

-.2

--,4

Orifice I

-.6 . - _ --

I

-.8 I
.6 .7 .8 .9 1.0 I.I 1.2 1.3 1.4

M

(g) _ = i0°; removable sting side of reflection plate.

Figure 2.- Continued.
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A

4

3
2

Cp b

Cp b

Cp b

Cp b

i

-2

-.4

Orifice 6

-.6

-.8

-.2

I----

Sting
configuralions

O A

E] B

o c
A 13

.4 E

--.4

Orifice 4

-6

---4

-8

-2

--.4

Orifice 2

-.6 i

t
-8 I

6 7 8 9 ID II 12 15

M

14

(h) _ = i0°; fixed sting side of reflection plate.

Figu_le 2.- Continued.
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-2

-4_

Cp b

-.6

-.8

-.2

÷

(,.---.____

-.6 -

-.8 .....

:i
Cp b

<) c

A D

,_ E

"__l ,

A
4
3
2

-.2 _-
I L

/

.6 .7 .8 .9 ID I.I 1.2 1.3 1.4

M

(i) _ : 14°; removable sti.ug side of reflection plate.

Figu_'e 2.- Continued.
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A

4
3

2

Cp b

Cp b

Cp b

Cp b

-2

-.4_

__6 --I'-9;ifl 'cei8

-.8

r
L .........

--.2 ' --

-.4 -_

--1- "

J

-.2 _ • -[ _. -- -- r_

-.8-- ] _ L .........

1

!

"< .......J

_f.......jco_0u_i,oos
¢ O

A D

. . !

M

(j) _ : 14°; fixed sting side of reflection plate.

Figure 2.- Continued.



22

-2

Cp b

-2

-4

-6

-8

Orifice 5

x I I stin9
-- -_- _ configurations

0 A
__ [] B

<) c

2
CPb Orifice

,
-,8

Cp b

L! Orifice,

.6 .7 .8 .9 1.0 I,I 1.2 1.3 1.4

M

(k) _ = 20°; removable sting side cf reflection plate.

Figure 2.- Continued.
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(_) _ = 20°j fixed stin C side of J eflection plate.
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Figure 2.- Concluded.
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CA b

CA b

CA b

.8

.6

.4

.2

0

.81

--8 °

_. J._/' f /

c..--,/

.6

.4

I

.2 ........

0

d/t

--- 0.619

.413

- -- .207
0i

.8

.6

.4

.2

a:O °

0
.6 .7 .8

]
•9 1.0 I.I 1.2 1.5 1.4

M

(a) Effects of Mach numbel; on base axial-force coefficient;
= 0° 4°, and _o

Figure 3.- Base axial-force characteristics.
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2
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CA b .4

.2

o i

.8

L/" \

a : 20 ° ......_/_/.Z

/
.6 /

: 14 ° _///
J //

CA .4 _ _-- - _
b

.2

0

_d-_["_ _ _ _'_"_

d/t

0.619
.415
.207

0

.8

CA b
.4

-_ _ .... ___ _-,- _"

.2 ----

0
.6 .7 .8 .9

(b) Effects of Mach number

= i0°_

Figure 3.-

IO I.I 1.2 1.5 I_

M

on base axial-force coefficient;
14 ° , and 20 ° .

Concluded.
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21 [ __I_L__I_L__I _ ,+o
ol_- t -_,,+o

-.2

0

..,. _._"_ _,,._--- --" ----"=" --"_':----- -_/_1.1 0

_--I,20

+I L--I--_-_---[-T-_ '°+
ol._l_-L---l_-fi--__ I I I_-'-°°

A

4

3
2

ACA b -.2 _ ..- /0.95

-.2

0

,--0.90

•--" _ _ _--0.80

0 - '___0.70
0 .I .2 .5 .4 .5 .6 .7

(a) a = 0°.

Figure 4.- Effects of ratio of sting diameter to base thickness on the
increments of base axial-force (_oefficient.
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-.2

0 _J

s_
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_--1.00
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-.2

0 .....- _

I

F 0.975
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_- 0.95
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0

/-- 0.90

_- 0.80
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0
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Figure 4.- Continued.
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Figure 4.- Concluded.
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-2
a : 20 °

0 __-=-=__ _-=-__ -

-.2
a = 14°

0.619

.415

.207
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0
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-.2
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aCAb ...... 7L ---'_" _ f
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Figure

-.2
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o - _'_' /- -"f
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(a) Variations of _CAb with Math number.

5.- Effects of Mach number and of angle of attack on the increments

of base axial-force coefficient.
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_igure 5.- Concluded.
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